Skip to content

Review On Terahertz Communications Research Paper

  • 1.

    Cisco The Zettabyte Era: Trends and Analysis 1–24 (Cisco and/or its affiliates, 2014).

  • 2.

    Kürner, T. & Priebe, S.Towards THz communications — status in research, standardization and regulation. J. Infrared Milli. Terahz Waves35, 53–62 (2014).

  • 3.

    Fettweis, G., Guderian, F. & Krone, S. In Design, Automation & Test in Europe Conf. (DATE11) 1–6 (IEEE, 2011).

  • 4.

    Pagani, M. & Italia, H. Microwave digital radio link transceivers: historical aspects and trends. In IEEE Int. Microwave Symp. (IMS2015) Workshop WMH-2 (IEEE, 2015).

  • 5.

    Niu, Y., Li, Y., Jin, D., Su, L. & Vasilakos, A. V.A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wirel. Netw.21, 2657–2676 (2015).

  • 6.

    Nagatsuma, T.et al. A 120-GHz integrated photonic transmitter. In IEEE Topical Meeting on Microwave Photonics (MWP2000) 225–228 (IEEE, 2000).

  • 7.

    Kleine-Ostmann, T., Pierz, K., Hein, G., Dawson, P. & Koch, M.Audio signal transmission over THz communication channel using semiconductor modulator. Electron. Lett.40, 124–125 (2004).

  • 8.

    Liu, T.-A., Lin, G.-R., Chang, Y.-C. & Pan, C.-L.Wireless audio and burst communication link with directly modulated THz photoconductive antenna. Opt. Express13, 10416–10423 (2005).

  • 9.

    Hirata, A.et al.120-GHz-band wireless link technologies for outdoor 10-Gbit/s data transmission. IEEE Trans. Microw. Theory Tech.60, 881–895 (2012).

  • 10.

    Takahashi, H.et al. 120-GHz-band 20-Gbit/s transmitter and receiver MMICs using quadrature phase shift keying. In Proc. 2012 7th European Microwave Integrated Circuit Conf. (EuMIC) 313–316 (IEEE, 2012).

  • 11.

    Shannon, C. E.Communication in the presence of noise. Proc. Inst. Radio Eng.37, 10–21 (1949).

  • 12.

    International Telecommunication Union ITU-R P.676-6: Attenuation by Atmospheric Gases (ITU, 2005).

  • 13.

    International Telecommunication Union ITU-R P.838-3: Specific Attenuation Model for Rain for use in Prediction Methods (ITU, 2005).

  • 14.

    Pozar, D. M.Microwave Engineering 4th edn (John Wiley and Sons, 2011).

  • 15.

    Han, S., I, C., Xu, Z. & Rowell, C.Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag.53, 186–194 (2015).

  • 16.

    Suen, J. Y., Fang, M. T., Denny, S. P. & Lubin, P. M.Modeling of terabit geostationary terahertz satellite links from globally dry locations. IEEE Trans. Terahz Sci. Technol.5, 299–313 (2015).

  • 17.

    Task Group 3d 100 Gbit/s Wireless (TG 3d (100G)); http://www.ieee802.org/15/pub/index_TG3d.html

  • 18.

    Tsonev, D., Videv, S. & Haas, H.Towards a 100 Gb/s visible light wireless access network. Opt. Express23, 1627–1637 (2015).

  • 19.

    Zheng, Z., Liu, L., Chen, T. & Hu, W. W.Integrated system of free-space optical and visible light communication for indoor wireless broadband access. Electron. Lett.51, 1943–1944 (2015).

  • 20.

    Oh, C. W., Tangdiongga, E. & Koonen, A. M. J.Steerable pencil beams for multi-Gbps indoor optical wireless communication. Opt. Lett.39, 5427–5430 (2014).

  • 21.

    Fath, T. & Haas, H.Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun.61, 733–742 (2013).

  • 22.

    International Telecommunication Union ITU-R P.840-3: Attenuation due to Clouds and Fog (ITU, 1999).

  • 23.

    Ma, J., Vorrius, F., Lamb, L., Moeller, L. & Federici, J. F.Experimental comparison of terahertz and infrared signaling in laboratory-controlled rain. J. Infrared Milli. Terahz Waves36, 856–865 (2015).

  • 24.

    Richardson, D. J., Fini, J. M. & Nelson, L. E.Space-division multiplexing in optical fibres. Nature Photon.7, 354–362 (2013).

  • 25.

    Song, H. J.et al.Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microw. Wireless Components Lett.22, 363–365 (2012).

  • 26.

    Wun, J. M., Lai, C. H., Chen, N. W., Bowers, J. E. & Shi, J. W.Flip-chip bonding packaged THz photodiode with broadband high-power performance. IEEE Photon. Technol. Lett.26, 2462–2464 (2014).

  • 27.

    Nagatsuma, T. & Carpintero, G.Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Trans. Electron.E98-C, 1060–1070 (2015).

  • 28.

    Shams, H.et al.Photonic generation for multichannel THz wireless communication. Opt. Express22, 23465–123472 (2014).

  • 29.

    Ducournau, G.et al.Ultrawide bandwidth single channel 0.4 THz wireless link combining broadband quasi-optic photomixer and coherent detection. IEEE Trans. Terahz Sci. Technol.4, 328–337 (2014).

  • 30.

    Li, X.et al.A 400G optical wireless integration delivery system. Opt. Express21, 187894–187899 (2013).

  • 31.

    Koenig, S.et al.Wireless sub-THz communication system with high data rate. Nature Photon.7, 977–981 (2013).

  • 32.

    Bowers, S. M., Abiri, B., Aflatouni, F. & Hajimiri, A. A compact optically driven travelling-wave radiating source. In 2014 Optical Fiber Commun. Conf. Exhibit. (OFC) Tu2A.3 (OSA, 2014).

  • 33.

    Nagatsuma, T.et al.Terahertz wireless communications based on photonics technologies. Opt. Express21, 477–487 (2013).

  • 34.

    Ducournau, G.et al.Coherent THz communication at 200 GHz using a frequency comb, UTC-PD and electronic detection. Electron. Lett.50, 386–388 (2014).

  • 35.

    Kanno, A.et al.Coherent terahertz wireless signal transmission using advanced optical fiber communication technology. J. Infrared Milli. Terahz Waves36, 180–197 (2015).

  • 36.

    Hyodo, M., Tani, M., Matsuura, S., Onodera, N. & Sakai, K.Generation of millimetre-wave generation using a dual-longitudinal mode microchip laser. Electron. Lett.32, 1589–1591 (1996).

  • 37.

    Cliche, J.-F., Shillue, B., Têtu, M. & Poulain, M. A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope. In IEEE Int. Microwave Symp. (IMS2007) 349–352 (IEEE, 2007).

  • 38.

    Pillet, G.et al.Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals. IEEE J. Lightwave Technol.26, 2764–2773 (2008).

  • 39.

    Danion, G.et al.Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes. Opt. Express22, 17673–17678 (2014).

  • 40.

    Pillet, G.et al.Dual-frequency laser phase locked at 100 GHz. IEEE J. Lightwave Technol.32, 3824–3830 (2014).

  • 41.

    Gross, M. C.et al.Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser. Opt. Express18, 13321–13330 (2010).

  • 42.

    Ducournau, G.et al.Highly coherent THz wave generation with a dual frequency Brillouin fiber laser and a 1.55 μm photomixer. Opt. Lett.36, 2044–2046 (2011).

  • 43.

    Yoshimizu, Y.et al.Wireless transmission using coherent terahertz wave with phase stabilization. IEICE Electron. Express10, 578–585 (2013).

  • 44.

    Shao, H.et al.Heterogeneously integrated III–V/silicon dual-mode distributed feedback laser array for THz generationOpt. Lett.39, 6403–6406 (2014).

  • 45.

    Debut, A., Randoux, S. & Zemmouri, J.Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers. J. Opt. Soc. Am. B18, 556–567 (2001).

  • 46.

    Ducournau, G.et al.Cascaded Brillouin fibre lasers coupled to unitravelling carrier photodiodes for narrow linewidth terahertz generation. Electron. Lett.50, 690–692 (2014).

  • 47.

    Moeller, L., Federici, J. & Su, K.2.5Gbit/s duobinary signaling with narrow bandwidth 0.625 terahertz source. Electron. Lett.47, 856–858 (2011).

  • 48.

    Jastrow, C.et al.Wireless digital data transmission at 300 GHz. Electron. Lett.46, 661–663 (2010).

  • 49.

    Song, H. J.,

  • 1.

    Cherry, S., Edholm’s law of bandwidth, IEEE Spectr. 41, 50 (2004).Google Scholar

  • 2.

    M. Jacob, S. Priebe, C. Jastrow, T. Kleine-Ostmann, T. Schrader, T. Kürner, An Overview of ongoing activities in the field of channel modeling, spectrum allocation and standardization for mm-wave and THz indoor communications, IEEE Globecom 2009, Honolulu, USA, Dec. 2009.Google Scholar

  • 3.

    D. C. O'Brien, G. E. Faulkner, E. B. Zyambo, D. J. Edwards, M. Whitehead, P. Stavrinou, G. Parry, J. A. Bellon, M. J. N. Sibley, V.A. Lalithambika and V.M. Joyner, High-speed integrated transceivers for optical wireless, IEEE Communications Magazine 41, 58-62 (2003).CrossRefGoogle Scholar

  • 4.

    M. Wolf and D. Kress, Short-Range Wireless Infrared Transmission: The Link budget compared to RF, IEEE Wireless Communications, 10, 8-14 (2003).CrossRefGoogle Scholar

  • 5.

    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel and T. Kürner, Short-range ultra broadband terahertz communications: concept and perspectives, IEEE Antennas & Propagation Magazine 49, 24-39 (2007).CrossRefGoogle Scholar

  • 6.

    J. Federici and L. Moeller, Review of terahertz and subterahertz wireless communications, Journ. Appl. Phys. 107, 111101 (2010).CrossRefGoogle Scholar

  • 7.

    M. J. Fitch and R. Osiander, Terahertz Waves for Communications and Sensing, Johns Hopkins APL Techn. Dig. 25, 348 (2004).Google Scholar

  • 8.

    http://www.ieee802.org/15/pub/IGthz.html.

  • 9.

    B(08)058 annex 3draft cept brief on wrc-11 agenda item 1.6 (bands above 275 ghz), www.ero.dk.

  • 10.

    http://www.transferjet.org/en/index.html

  • 11.

    http://www.irda.org/displaycommon.cfm?an=1&subarticlenbr=102

  • 12.

    L.W. Couch, Digital and Analog Communication Systems, Prentice Hall 1997, pp. 560-572.Google Scholar

  • 13.

    Tech. Dig. IEEE MTT-S International Microwave Symposium Workshop, WSN/WMD/WFE, Honolulu (2007).Google Scholar

  • 14.

    M. Asada, N. Orihashi, and S. Suzuki, Voltage-controlled harmonic oscillation at about 1 THz in resonant tunneling diodes integrated with slot antennas, Japanese Journal of Applied Physics 46, 2904-2906 (2007).CrossRefGoogle Scholar

  • 15.

    T. Unuma, N. Sekine, and K. Hirakawa, Dephasing of Bloch oscillating electrons in GaAs-based superlattices due to interface roughness scattering, Appl. Phys. Lett. 89, 161913 (2006).CrossRefGoogle Scholar

  • 16.

    T. Suemitsu, Y. M. Meziani, Y. Hosono, M. Hanabe, T. Otsuji, E. Sano, Novel plasmon-resonant terahertz-wave emitter using a double-decked HEMT structure”, Tech. Dig. 65th Device Research Conference (DRC), 157-158 (2007).Google Scholar

  • 17.

    G. Scalari, C. Walther, M. Fischer, M. I. Amanti, R. Terazzi, N. Hoyler, H. Beere, D. Ritchie, and J. Faist, Recent progress on long wavelength quantum cascade laser operating between 1-2 THz, Tech. Dig. IEEE LEOS Annual Meeting, ThJ1, Florida, 755-756 (2007).Google Scholar

  • 18.

    T. Nagatsuma, H. Ito, and T. Ishibashi, High-power RF photodiodes and their applications, Laser & Photonics Review 3, 123-137 ( 2009).CrossRefGoogle Scholar

  • 19.

    A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsua, and H. Ito, High-power and broadband sub-terahertz wave generation using a J-band photomixer module with rectangular-waveguide output port, Tech. Dig. 2008 Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008), M4K2.1199 (2008).Google Scholar

  • 20.

    N. Shimizu, and T. Nagatsuma, Photodiode-integrated microstrip antenna array for subterahertz radiation, IEEE Photon. Technol. Lett. 18, 743-745 (2006).CrossRefGoogle Scholar

  • 21.

    K. J. Williams, D. A. Tulchinsky, and J. C. Campbell, High-power photodiodes, Tech. Dig. Microwave Photonics, 9-13 (2007).Google Scholar

  • 22.

    T. Minotani, A. Hirata, and T. Nagatsuma, A broadband 120-GHz. Schottky-diode receiver for 10-Gbit/s wireless links, IEICE Trans. Electron. E86-C, 1501-1505 (2003).Google Scholar

  • 23.

    H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma and Y. Kado, 8 Gbit/s wireless data transmission at 250 GHz, IEE Electron. Lett., 45, 1121-1122 (2009).CrossRefGoogle Scholar

  • 24.

    R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, T. Kürner, Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments, IEEE Journal Select. Topics Quant. Electronics, 14, 421 (2008).CrossRefGoogle Scholar

  • 25.

    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D.Mittleman, M. Koch, and T. Kürner, THz characterisation of building materials, Electron. Lett. 41, 1002-1004 (2005).CrossRefGoogle Scholar

  • 26.

    R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch and T. Kürner, Scattering analysis for the modeling of THz communication systems, IEEE Trans. on Antennas & Propagation (special issue on Optical and THz Antenna Technology) 55, 3002-3009 (2007).Google Scholar

  • 27.

    D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, Flexible All-plastic mirrors for the THz range, Applied Physics A 74, 291 (2002).CrossRefGoogle Scholar

  • 28.

    US patent 6.954.309 B2Google Scholar

  • 29.

    M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, England, 1998.Google Scholar

  • 30.

    R. Piesiewicz, K. Baaske, K. Gerlach, M. Koch, T. Kürner, The potential of dielectric mirrors as key elements in future non-line-of-sight indoor terahertz communication systems, Proc. 16th Intl. Symp. on Space Terahertz Technology, Göteborg, Sweden, May 2005.Google Scholar

  • 31.

    N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, D. Mittleman, Omnidirectional terahertz mirrors: a key element for future THz communication systems, Appl. Phys. Lett. 88, 202905 (2006).CrossRefGoogle Scholar

  • 32.

    I. A. Ibraheem, N. Krumbholz, D. Mittleman and M. Koch, Low-dispersive dielectric mirrors for future wireless terahertz communication systems, IEEE Microwave and Wireless Components Letters 18, 67 (2008).CrossRefGoogle Scholar

  • 33.

    C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies, Appl. Phys. Lett. 96, 111108 (2010).CrossRefGoogle Scholar

  • 34.

    T. S. Bird, A. R. Weily and S. M. Hanham, Antennas for future very-high throughput wireless LANs, IEEE Antennas & Propagation Society Symposium, San Diego, CA, 5 - 12 July, 2008.Google Scholar

  • 35.

    P. Herrero, M. Jacob, J. Schöbel, Planar antennas and interconnection components for 122 GHz and 140 GHz future communication systems, THz Metrology, Frequenz (special issue on Terahertz Technologies and Applications) 62, 137-148 (2008).Google Scholar

  • 36.

    I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, An optically controllable terahertz filter, Appl. Phys. Lett. 76, 2821 (2000).CrossRefGoogle Scholar

  • 37.

    R. Kersting, G. Strasser, and K. Unterrainer, Terahertz phase modulator, Electron. Lett. 36, 1156 (2000).CrossRefGoogle Scholar

  • 38.

    T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, Room-temperature operation of an electrically driven terahertz modulator, Appl. Phys. Lett. 84, 3555-3557 (2004).CrossRefGoogle Scholar

  • 39.

    S. J. Allen, D. C. Tsui, and R. A. Logan, Observation of the Two-Dimensional Plasmon in Silicon Inversion Layers, Phys. Rev. Lett. 38, 980 (1977).CrossRefGoogle Scholar

  • 40.

    T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso and M. Koch, Spatially resolved measurements of depletion properties of large gate 2DEG semiconductor terahertz modulators, Journ. Appl. Phys. 105, 093707 (2009).CrossRefGoogle Scholar

  • 41.

    T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, Electrically controlled room temperature terahertz phase shifter with liquid crystal, IEEE Microw. Wirel. Compon. Lett. 14, 77 (2004).CrossRefGoogle Scholar

  • 42.

    C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals, Appl. Phys. Lett. 83, 4497 (2003).CrossRefGoogle Scholar

  • 43.

    R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, Liquid crystal based electrically switchable Bragg structure for THz waves, Opt. Exp. 17, 7377 (2009).CrossRefGoogle Scholar

  • 44.

    T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, Audio signal transmission over THz communication channel using semiconductor modulator, Electron. Lett. 40, 124-126 (2004).CrossRefGoogle Scholar

  • 45.

    T. K. Sarkar, J. Zhong, K. Kyungjung, A. Medouri, and M. Salazar-Palma, A survey of various propagation models for mobile communication, IEEE Antennas and Propagation Magazine 45, 51–82 (2003).CrossRefGoogle Scholar

  • 46.

    S. Yong and C. Chong, An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges, EURASIP Journal on Wireless Communications and Networking 2007, 1–10 (2007).CrossRefGoogle Scholar

  • 47.

    H. Xu, V. Kukshya and T. S. Rappaport, Spatial and temporal characteristics of 60-GHz indoor channels, IEEE J. on Selected Areas in Communications 20, 620-630 (2002).CrossRefGoogle Scholar

  • 48.

    P. Marinier, G. Y. Delisle, L. Talbi, A coverage prediction technique for indoor wireless millimeter waves system, Wireless Personal Communications 3, 257-271 (1996).CrossRefGoogle Scholar

  • 49.

    T. Kürner, M. Jacob, R. Piesiewicz, J. Schöbel, An integrated simulation environment for the investigation of future indoor THz communication systems, Simulation 84, 123-130 (2008).CrossRefGoogle Scholar

  • 50.

    http://eesof.tm.agilent.com/products/ads_main.html

  • 51.

    http://www.mathworks.com/

  • 52.

    C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch and T. Kleine-Ostmann, 300 GHz Transmission System, Electron. Lett. 44, 213-214 (2008).CrossRefGoogle Scholar

  • 53.

    T. Kleine-Ostmann, T. Schrader, M. Bieler, U. Siegner, C. Monte, B. Gutschwager, J. Hollandt, A. Steiger, L. Werner, R. Müller, G. Ulm, I. Pupeza, and M. Koch, THz Metrology, Frequenz (special issue on Terahertz Technologies and Applications) 62, 137-148 (2008).Google Scholar

  • 54.

    C. Jastrow, S. Priebe, B. Spitschan, J. Hartmann, M. Jacob, T. Kürner, T. Schrader and T. Kleine-Ostmann, Wireless digital data transmission at 300 GHz, Electron. Lett. 46, 661-663 (2010).CrossRefGoogle Scholar

  • 55.

    A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Trans. Microwave Theory Tech. 54, 1937-1944 (2006).CrossRefGoogle Scholar

  • 56.

    A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies, J. Lightwave Technol. 26, 2338-2344 (2008).CrossRefGoogle Scholar

  • 57.

    T. Kosugi, M. Tokumitsu, K. Murata, T. Enoki, H. Takahashi, A. Hirata, and T. Nagatsuma, 120-GHz Tx/Rx waveguide modules for 10-Gbit/s wireless link system, IEEE Compound Semiconduct. IC Symp. Dig., 25-28 (2006).Google Scholar

  • 58.

    R. Yamaguchi, A. HIrata, T. Kosugi, H. Takahashi, N. Kukutsu, T. Nagatsuma, Y. Kado, H. Ikegawa, H. Nishikawa, and T. Nakayama, 10-Gbit/s MMIC wireless link exceeding 800 meters, Proc. 2008 IEEE RWS, TH1C-3, Florida (2008).Google Scholar

  • 59.

    A. Hirata, H. Takahashi, N. Kukutsu, Y. Kado, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, Transmission trial of television broadcast materials using 120-GHz-band wireless link, NTT Technical Review 7, March Issue (2009).Google Scholar

  • 60.

    A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, 10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal, IEEE Trans. Microwave Theory Tech. 57, 1102-1109 (2009).CrossRefGoogle Scholar

  • 61.

    T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, Giga-bit wireless link using 300-400 GHz bands, Tech. Dig. IEEE International Topical Meeting on Microwave Photonics, Th.2.3 (2009).Google Scholar